Appendix A: MEDLINE Search Strategy - 1. Frail Elderly.sh,kf. - 2. (frail* or geriatric syndrome* or geriatric disorder*).ti,ab. - 3. ((elder* or old* or senior* or geriatric*) adj4 function* adj4 (declin* or impair*)).af. - 4. 1 or 2 or 3 - 5. Developing Countries.sh,kf. - 6. (Africa* or Asia* or Caribbean* or West Indi* or South America* or Latin America* or Central America*).hw,kf,ti,ab,cp. - 7. ((developing or less* developed or under developed or underdeveloped or middle income or low* income or underserved or under served or deprived or poor*) adj (countr* or nation? or population? or world)).ti,ab. - 8. ((developing or less* developed or under developed or underdeveloped or middle income or low* income) adj (economy or economies)).ti,ab. - 9. (low* adj (gdp or gnp or gni or gross domestic or gross national)).ti,ab. - 10. (low adj3 middle adj3 countr*).ti,ab. - 11. (lmic or lmics or third world or lami countr*).ti,ab. - 12. transitional countr*.ti.ab. - 13. (Afghanistan or Albania* or Algeria* or Angola* or Antigua or Barbuda or Argentin* or Armenia* or Aruba or Azerbaijan or Bahrain or Bangladesh* or Barbados or Benin or Byelarus or Byelorussian or Belarus or Belorussian or Belorussia or Belize or Bhutan or Bolivia or Bosnia or Herzegovina or Hercegovina or Botswana or Brasil* or Brazil* or Bulgaria* or Burkina Faso or Burkina Faso or Upper Volta or Burundi or Urundi or Cambodia* or Khmer Republic or Kampuchea or Cameroon or Cameroon or Cameron or Camerons Verde or Cabo Verde or Central African Republic or Chiad or Chile or China or Chinese or Colombia* or Comoros or Comoro Islands or Comores or Mayotte or Congo or Zaire or Costa Rica or Cote d'Ivoire or Ivory Coast or Croatia or Cuba* or Cyprus or Czechoslovakia or Czech Republic or Slovakia or Slovak Republic or Djibouti or French Somaliland or Dominica or Dominican Republic or East Timor or East Timur or Timor Leste or Ecuador or Egypt* or United Arab Republic or El Salvador or Eritrea or Estonia* or Ethiopia* or Fiji or Gabon or Gabonese Republic or Gambia or Gaza or Georgia or Georgian or Ghana or Gold Coast or Greece or Grenada or Grenadines or Guatemala or Guinea or Guam or Guiana or Guyana or Haiti* or Honduras or Hungary or India* or Maldiv* or Indonesia* or Iran* or Iraq* or Isle of Man or Jamaica* or Jordan* or Kazakhstan or Kazakh or Kenya* or Kiribati or Korea* or Kosovo or Kyrgyzstan* or Kiribati or Kyrgyz Republic or Kirghiz or Kirgizstan or Lao PDR or Laos or Latvia* or Lebanon or Lebanese or Lesotho or Basutoland or Liberia or Libya* or Lithuania* or Macedonia* or Madagascar or Malagasy Republic or Malaysia* or Malaya or Malay or Sabah or Sarawak or Malawi or Nyasaland or Mali or Malta or Marshall Islands or Mauritania or Mauritius or Agalega Islands or Mexic* or Micronesia or Middle East or Moldova or Moldovia or Moldovian or Mongolia* or Montenegro or Morocco or Ifni or Mozambique or Myanmar or Myanma or Burma or Namibia or Nepal* or Netherlands Antilles or New Caledonia or Nicaragua or Niger or Nigeria* or Northern Mariana Islands or Oman or Muscat or Pakistan or Palau or Palestine or Panama or Paraguay or Peru* or Philippines or Philippines or Phillippines or Phillippines or Poland or Portugal or Principe or Puerto Rico or Romania* or Rumania or Rumania or Russia or Russian or Rwanda or Ruanda or Saint Kitts or St Kitts or Nevis or Saint Lucia or St Lucia or Saint Vincent or St Vincent or Grenadines or Samoa* or Samoan Islands or Navigator Island or Navigator Islands or Sao Tome or Saudi Arabia or Senegal or Serbia* or Montenegro or Seychelles or Sierra Leone or Slovenia or Sri Lanka* or Ceylon or Solomon Islands or Somalia* or South Africa* or Sudan* or Suriname or Surinam or Swaziland or Syria or Tajikistan or Tadzhikistan or Tadjikistan or Tadzhik or Tanzania* or Thailand or Thai or Togo or Togolese Republic or Tonga or Trinidad or Tobago or Tunisia* or Turk* or Turkmenistan or Turkmen or Tuvalu or Uganda* or Ukrain* or Uruguay or USSR or Soviet Union or Union of Soviet Socialist Republics or Uzbekistan or Uzbek or Vanuatu or New $Hebrides \ or \ Venezuela \ or \ Vietnam^* \ or \ Viet \ Nam^* \ or \ West \ Bank \ or \ Yemen^* \ or \ Yugoslavia \ or \ Zambia^* \ or \ Zimbabwe^* \ or \ Rhodesia^*).hw,kf,ti,ab,cp.$ 14. 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 15. 4 and 14 ## **Appendix B: Study Quality Assessment** | Authors and year of publication* | Random sample
or whole
population | Unbiased
sampling
frame | Adequate sample
size
(>300 participants) | Used
standard
measures | Outcomes
measured by
unbiased
assessors | Adequate
response rate
(70%), refusers
described | Confidence
interval (CI) for
prevalence,
subgroup
analysis | Study
subjects are
described | Risk of bias
assessment | |---|---|-------------------------------|--|------------------------------|--|---|--|------------------------------------|----------------------------| | Tribess et al, 2012 ¹ | V | × | V | V | × | $\sqrt{,}$ | ×,√ | V | 5.5 | | De Andrade et al, 2013 ² | \checkmark | \checkmark | \checkmark | V | × | ×,× | ×,√ | \checkmark | 5.5 | | Júnior et al, 2014 ³ | \checkmark | N/A | × | $\sqrt{}$ | × | $\sqrt{,}$ | ×,√ | $\sqrt{}$ | 4.5 | | Pegorari et al, 2014 ⁴ | \checkmark | × | \checkmark | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{,}$ | $\times, \sqrt{}$ | $\sqrt{}$ | 6.5 | | Corona et al, 2015 ⁵ | \checkmark | $\sqrt{}$ | \checkmark | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{,}$ × | ×,√ | $\sqrt{}$ | 7.0 | | Santos et al, 2015 ⁶ | × | × | × | $\sqrt{}$ | $\sqrt{}$ | √,× | ×,√ | $\sqrt{}$ | 4.0 | | Closs et al, 2016 ⁷ | \checkmark | \checkmark | \checkmark | V | $\sqrt{}$ | ×,× | $\sqrt{,}$ | $\sqrt{}$ | 7.0 | | Mello et al, 2017 ⁸ | \checkmark | $\sqrt{}$ | × | V | V | $\sqrt{,}\times$ | $\times, \sqrt{}$ | V | 6.0 | | de Albuquerque Sousa et al, 2012 ⁹ | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark | √,× | ×,√ | \checkmark | 7.0 | | dos Santos Amaral et al. 2013 ¹⁰ | × | × | \checkmark | V | \checkmark | $\sqrt{,}$ × | ×,× | V | 4.5 | | Moreira et al, 2013 ¹¹ | \checkmark | × | \checkmark | $\sqrt{}$ | × | $\sqrt{,}$ | √,× | $\sqrt{}$ | 5.5 | | Neri et al, 2013 ¹² | \checkmark | $\sqrt{}$ | \checkmark | V | \checkmark | ×,× | ×,√ | $\sqrt{}$ | 6.5 | | Vieira et al, 2013 ¹³ | \checkmark | $\sqrt{}$ | \checkmark | $\sqrt{}$ | × | ×,√ | ×,× | $\sqrt{}$ | 5.5 | | Ricci et al, 2014 ¹⁴ | $\sqrt{}$ | \checkmark | \checkmark | V | $\sqrt{}$ | $\sqrt{,}$ | ×,√ | \checkmark | 7.5 | | Silveira et al, 2015 ¹⁵ | \checkmark | $\sqrt{}$ | × | $\sqrt{}$ | × | ×,× | ×,× | $\sqrt{}$ | 4.0 | | Calado et al, 2016 ¹⁶ | \checkmark | \checkmark | \checkmark | V | $\sqrt{}$ | $\sqrt{,}\times$ | ×,√ | $\sqrt{}$ | 7.0 | | Augusti et al, 2017 ¹⁷ | \checkmark | $\sqrt{}$ | \checkmark | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{,}\times$ | ×,√ | $\sqrt{}$ | 7.0 | | Ferriolli et al, 2017 ¹⁸ | \checkmark | × | \checkmark | $\sqrt{}$ | × | $\sqrt{,}\times$ | ×,√ | $\sqrt{}$ | 5.0 | | Grden et al, 2017 ¹⁹ | \checkmark | \checkmark | × | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{,}\times$ | ×,√ | $\sqrt{}$ | 6.0 | | Ocampo-Chaparro et al, 2013 ²⁰ | V | V | \checkmark | V | $\sqrt{}$ | $\sqrt{,}$ × | $\times, \sqrt{}$ | \checkmark | 7.0 | | Authors and year of publication* | Random sample
or whole
population | Unbiased
sampling
frame | Adequate sample
size
(>300 participants) | Used
standard
measures | Outcomes
measured by
unbiased
assessors | Adequate
response rate
(70%), refusers
described | Confidence
interval (CI) for
prevalence,
subgroup
analysis | Study
subjects are
described | Risk of bias assessment | |---|---|-------------------------------|--|------------------------------|--|---|--|------------------------------------|-------------------------| | Curcio et al, 2014 ²¹ | × | × | V | $\sqrt{}$ | V | ×,× | ×,√ | V | 4.5 | | Samper-Ternent et al, 2016 ²² | $\sqrt{}$ | × | \checkmark | $\sqrt{}$ | $\sqrt{}$ | ×,√ | ×,√ | $\sqrt{}$ | 6.0 | | Garcia-Pena et al,
2016 ²³ | $\sqrt{}$ | \checkmark | \checkmark | \checkmark | $\sqrt{}$ | $\sqrt{,}$ | ×,√ | $\sqrt{}$ | 7.5 | | Sanchez-Garcia et al, 2017 ²⁴ | $\sqrt{}$ | \checkmark | \checkmark | $\sqrt{}$ | $\sqrt{}$ | √,× | ×,√ | \checkmark | 7.0 | | Moreno-Tamayo et al, 2017 ²⁵ | $\sqrt{}$ | \checkmark | \checkmark | $\sqrt{}$ | × | $\sqrt{,}$ | ×,√ | \checkmark | 6.5 | | Chen et al, 2015 ²⁶ | × | × | \checkmark | $\sqrt{}$ | $\sqrt{}$ | ×,√ | ×,√ | \checkmark | 5.0 | | Wu et al ,2017 ²⁷ | $\sqrt{}$ | \checkmark | \checkmark | \checkmark | $\sqrt{}$ | $\sqrt{,}$ × | $\sqrt{,}$ | $\sqrt{}$ | 7.5 | | Dong et al, 2017 ²⁸ | $\sqrt{}$ | V | \checkmark | \checkmark | $\sqrt{}$ | ×,× | ×,× | $\sqrt{}$ | 6.0 | | Wang et al, 2015 ²⁹ | × | × | \checkmark | \checkmark | $\sqrt{}$ | \times , \times | ×,√ | $\sqrt{}$ | 4.5 | | Badrasawi et al,
2017 ³⁰ | $\sqrt{}$ | V | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{,}$ | ×,√ | $\sqrt{}$ | 7.5 | | Kashikar et al, 2016 ³¹ | \checkmark | $\sqrt{}$ | × | \checkmark | $\sqrt{}$ | $\sqrt{,}$ | ×,√ | $\sqrt{}$ | 6.5 | | Gurina et al, 2011 ³² | \checkmark | \checkmark | \checkmark | $\sqrt{}$ | $\sqrt{}$ | $\times, $ | ×,√ | $\sqrt{}$ | 7.0 | | Alvarado et al, 2008 ³³ |
\checkmark | $\sqrt{}$ | $\sqrt{}$ | \checkmark | × | $\sqrt{,}\times$ | ×,√ | $\sqrt{}$ | 6.0 | | Aguilar-Navarro et al, 2015 ³⁴ | $\sqrt{}$ | \checkmark | \checkmark | $\sqrt{}$ | $\sqrt{}$ | ×,× | ×,√ | $\sqrt{}$ | 6.5 | | Avila-Funes et al, 2016 ³⁵ | $\sqrt{}$ | \checkmark | $\sqrt{}$ | $\sqrt{}$ | \checkmark | $\sqrt{,}$ | ×,√ | $\sqrt{}$ | 7.5 | | Sanchez-Garcia et al, 2014 ³⁶ | $\sqrt{}$ | \checkmark | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{}$ | N/A | $\times,$ | $\sqrt{}$ | 6.5 | | Akin et al, 2015 ³⁷ | \checkmark | \checkmark | $\sqrt{}$ | \checkmark | × | \times, \times | ×,√ | \checkmark | 5.5 | | Zhu et al, 2016 ³⁸ | \checkmark | \checkmark | \checkmark | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{,}$ $$ | \times, \times | $\sqrt{}$ | 7.0 | | Jotheeswaran et al, 2015 ³⁹ | $\sqrt{}$ | N/A | \checkmark | $\sqrt{}$ | $\sqrt{}$ | $\sqrt{,}\times$ | ×,× | $\sqrt{}$ | 5.5 | | Fhon et al, 2012 ⁴⁰ | $\sqrt{}$ | \checkmark | × | | $\sqrt{}$ | $\sqrt{,}\times$ | ×,√ | $\sqrt{}$ | 6.0 | | Agreli et al, 2013 ⁴¹ | $\sqrt{}$ | $\sqrt{}$ | × | $\sqrt{}$ | X | $\sqrt{,}\times$ | ×,√ | $\sqrt{}$ | 5.0 | | Duarte et al, 2013 ⁴² | $\sqrt{}$ | × | × | \checkmark | × | $\sqrt{,}\times$ | ×,× | \checkmark | 3.5 | | Authors and year of publication* | Random sample
or whole
population | Unbiased
sampling
frame | Adequate sample
size
(>300 participants) | Used
standard
measures | Outcomes
measured by
unbiased
assessors | Adequate
response rate
(70%), refusers
described | Confidence
interval (CI) for
prevalence,
subgroup
analysis | Study
subjects are
described | Risk of bias assessment | |---|---|-------------------------------|--|------------------------------|--|---|--|------------------------------------|-------------------------| | Del Brutto et al,
2016 ⁴³ | V | N/A | V | V | × | $\sqrt{,}$ | ×,√ | V | 5.5 | | Fabricio-Wehbe et al, 2009 ⁴⁴ | \checkmark | $\sqrt{}$ | × | V | \checkmark | ×,× | ×,√ | $\sqrt{}$ | 5.5 | | Carneiro et al, 2016 ⁴⁵ | $\sqrt{}$ | \checkmark | $\sqrt{}$ | \checkmark | $\sqrt{}$ | ×,× | ×,√ | \checkmark | 6.5 | | Bennett et al, 201346 | × | × | $\sqrt{}$ | \checkmark | \checkmark | \times, \times | ×,√ | \checkmark | 4.5 | | Woo et al, 2015 ⁴⁷ | \checkmark | \checkmark | $\sqrt{}$ | \checkmark | $\sqrt{}$ | \times, \times | ×,√ | \checkmark | 6.5 | | Hao et al, 2016 ⁴⁸ | \checkmark | \checkmark | $\sqrt{}$ | √ | $\sqrt{}$ | \times, \times | √,√ | \checkmark | 7.0 | | Sathasivam et al,
2015 ⁴⁹ | \checkmark | \checkmark | \checkmark | $\sqrt{}$ | × | √,× | ×,√ | $\sqrt{}$ | 6.0 | | García-González et al, 2009 ⁵⁰ | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark | ×,× | $\times, \sqrt{}$ | \checkmark | 6.5 | | Perez-Zepeda et al,
2016 ⁵¹ | $\sqrt{}$ | $\sqrt{}$ | \checkmark | $\sqrt{}$ | $\sqrt{}$ | √,× | ×,× | V | 6.5 | | de Leon Gonzalez,
2015 ⁵² | \checkmark | × | $\sqrt{}$ | \checkmark | × | ×,× | ×,√ | $\sqrt{}$ | 4.5 | | Rosero-Bixby et al, 2009 ⁵³ | $\sqrt{}$ | $\sqrt{}$ | \checkmark | $\sqrt{}$ | $\sqrt{}$ | ×,√ | ×,√ | $\sqrt{}$ | 7.0 | | Galbán et al, 2009 ⁵⁴ | × | × | $\sqrt{}$ | $\sqrt{}$ | × | $\sqrt{,}$ × | ×,√ | $\sqrt{}$ | 4.0 | | Boulos et al, 2016 ⁵⁵ | \checkmark | $\sqrt{}$ | \checkmark | V | \checkmark | $\sqrt{,}$ × | ×,√ | V | 7.0 | | Gray et al, 2017 ⁵⁶ | $\sqrt{}$ | \checkmark | $\sqrt{}$ | \checkmark | $\sqrt{}$ | ×,× | $\times, \sqrt{}$ | \checkmark | 6.5 | | Parentoni et al, 2013 ⁵⁷ | × | × | × | \checkmark | × | $\sqrt{,}\times$ | ×,√ | \checkmark | 3.0 | | Bastone et al, 2015 ⁵⁸ | × | × | × | \checkmark | × | $\sqrt{,}$ | ×,× | $\sqrt{}$ | 3.0 | | Cakmur et al, 2015 ⁵⁹ | × | × | × | $\sqrt{}$ | × | $\sqrt{,}\times$ | \times, \times | \checkmark | 2.5 | | Sampaio et al, 2015 ⁶⁰ | × | × | × | V | × | ×,× | ×,× | \checkmark | 2.0 | | Zainuddin et al,
2017 ⁶¹ | X | × | X | $\sqrt{}$ | × | х,х | ×,√ | $\sqrt{}$ | 2.5 | √- Criteria is satisfied ×- Criteria is not satisfied/ not documented N/A- Not applicable ## Appendix C: Characteristics of the studies included in the systematic review of prevalence of frailty and pre-frailty | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants'
mean age/Age | Sampling technique | Frailty assessment | Prevaler
95% | nce (%),
6 CI | Study strengths reported by | Study limitations reported by | |--------------------------------------|---------|--|---|------------------|----------|-------------------------------|--|---------------------|-----------------|------------------|---|---| | publication* | | setting/time
period | | | | range (years) | | method | frailty | pre-
frailty | authors | authors | | Tribess et al,
2012 ¹ | Brazil | Population Study
of Physical
Activity and
Aging (EPAFE),
City of Uberaba,
Minas Gerais
Conducted from
May to August
2010 | Cross sectional study | 622 | 65 | ≥ 60
(71.0±7.7)
60-96 | Random
sampling | Fried
phenotype* | 19.9 | 49.8 | Socio-
demographic
characteristics of
the elderly in this
study are similar
to those reported
in surveys in Latin
America indicates
the potential
generalization of
the present results
to other
populations. | The measurements of self-perception may have been influenced by the low educational level of participants and their motivational aspects. | | De Andrade et al, 2013 ² | Brazil | SABE study
(Wave 2-2006)
Survivors from
baseline study
(2000) and new
participants of the
second wave
São Paulo | Cross sectional
study with
SABE data | 1374 | 59.7 | ≥ 60 | Cluster
sampling | Fried
phenotype* | 8.5 | 40.7 | Use of large representative sample of community dwelling elderly increases the generalizability of results. Frailty has measured using well defined method. | Use of self-
reported data on
physical activities
may introduce
biases that are
difficult to control. | | Júnior et al,
2014 ³ | Brazil | Epidemiological
study titled
Nutritional
status, risk
behaviours and
health conditions
of the elderly
people of Lafaiete
Coutinho-BA
Urban area | Cross sectional study | 286 | 54.2 | ≥ 60 | Census of all
older adults in
the area | Fried
phenotype* | 23.8 | 58.7 | | Some instruments used in the study required subjective or self-reported information that can be lead to memory bias. | | Pegorari et al,
2014 ⁴ | Brazil | Urban area of the city of Uberaba, MG | Cross sectional
observational
and analytical
household
survey | 958 | 64.4 | ≥ 60
(73.7±6.7) | Stratified
proportional
sampling | Fried
phenotype* | 12.8 | 54.5 | Results of the
study contribute to
deepen knowledge
of frailty
syndrome among
Brazilian elderly | - | | Authors and
year of
publication* | Country | Data
source/study | Study design | Effective sample | Female % | Participants' mean age/Age | Sampling technique | Frailty assessment | Prevale
95% | nce (%),
% CI | Study strengths reported by authors | Study limitations
reported by
authors | |--|---------|--|--|------------------|----------|-----------------------------|---------------------------|---------------------|---------------------------|---------------------------|--|--| | ривисацоп* | | setting/time
period | | | | range (years) | | method | frailty | pre-
frailty | autnors | autnors | | Pegorari et al,
2014 ⁴ cont. | | | | | | | | | | | individuals and
support planning
and
implementation of
interventions and
care actions. | | | Corona et al,
2015 ⁵ | Brazil | SABE study
(Wave 3-2010),
Survivors from
baseline (2000)
and second wave
(2006) and new
participants of the
third wave
São Paulo | Cross sectional
population
based study | 1171 | 65.0 | ≥ 60 | Probabilistic
sampling | Fried
phenotype* | 11.3 | 50.6 | Large population
base cohort, with
a representative
sample of
community
dwelling older
adults from the
largest city in
Brazil. | - | | Santos et al, 2015 ⁶ | Brazil | Database called "Identifying the health disease process enrolled population at the Family Health Units" Pau Ferro, municipality of Jequie/BA Conducted from May to
November 2013 | Observational
cross sectional
study | 136 | 75.5 | ≥60
(72.3±8.4)
60-101 | - | Fried
phenotype* | 16.9 | 61.8 | - | - | | Closs et al, 2016 ⁷ | Brazil | Multidimensional
Study of the
Elderly in the
Family Health
Strategy (EMI-
SUS)
Conducted from
March 2011 to
December 2012 | Cross-sectional
study | 521 | 64.3 | \geq 60 (68.5 ± 6.8) | Random
sampling | Fried
phenotype* | 21.5
(17.97-
25.03) | 51.1
(46.81-
55.39) | - | The cross-sectional design of the study. Access to the study by immobile or bedridden elderly people was limited as the frailty and geriatric syndromes evaluations were performed in an outpatient setting and not in their own homes. | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants'
mean age/Age | Sampling
technique | Frailty assessment | Prevale
95% | nce (%),
% CI | Study strengths reported by | Study limitations reported by | |---|---------|--|-----------------------|------------------|----------|-------------------------------|-------------------------|--------------------|----------------|------------------|-----------------------------|--| | publication* | | setting/time
period | | | | range (years) | | method | frailty | pre-
frailty | authors | authors | | Mello et al,
2017 ⁸ | Brazil | Survey on Conditions of Health and Use of Health Services in the Territory of Manguinhos, Rio de Janeiro Municipality Manguinhos neighborhood of Rio de Janeiro | Cross-sectional study | 137 | 67.9 | ≥60
(70.2±7.4) | Probability
sampling | Fried phenotype* | 12.4 | 61.3 | - | Sample size is small and it represents around 10% of the population of this age group in the region. It is not possible to establish a cause and effect relationship. The grip strength, physical activity and gait speed, have been adapted to fit the local reality of the research, which may lead to some differences when comparing with the results of other | | | | | | | | | | | | | | studies. | | de Albuquerque
Sousa et al,
2012 ⁹ | Brazil | FIBRA- urban
zone of Santa
Cruz city | Cross sectional study | 391 | 61.4 | ≥ 65
(74.0±6.5)
65-96 | Random
sampling | Fried phenotype* | 17.1 | 60.1 | • | Adapted version of the Minnesota Questionnaire of Physical Activities and Leisure was used in this study as original questionnaire did not match with Brazilian cultural context. The used cut-off point (20th percentile) may be underestimating the physical activity level. | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants'
mean age/Age | Sampling technique | Frailty assessment | | nce (%),
% CI | Study strengths reported by | Study limitations reported by | |---|---------|---|---|---|--|-------------------------------|---|---------------------|---|--|---|--| | publication* | | setting/time
period | | | | range (years) | | method | frailty | pre-
frailty | authors | authors | | dos Santos
Amaral et al,
2013 ¹⁰ | Brazil | This study is a part of a project titled "Allostatic load, frailty and functionality in the elderly" Neighbourhood Rocas, Natal | Analytical
observational
cross sectional
study | 295 | 67.3 | ≥ 65
(74.3±6.9)
65-100 | - | Fried
phenotype* | 18.6 | 55.3 | Sample is representative. Low percentage of refusals. | - | | Moreira et al, 2013 ¹¹ | Brazil | FIBRA- Northern
area of the city of
Rio de Janeiro
Conducted from
January 2009 to
January 2010 | Cross sectional
descriptive
study | 754 | 66.9 | ≥ 65
(76.6±6.9) | Inverse
random
sampling
stratified by
gender and
age | Fried
phenotype* | 9.5 | 47.5 | - | An adapted version of Minnesota Questionnaire of Physical Activities and Leisure was used in this study. However, it is also problematic as reference activities in the questionnaire are atypical in Brazilian culture. This may lead to errors in estimating the weekly caloric expenditure. | | Neri et al,
2013 ¹² | Brazil | FIBRA Seven cities Belem Parnaiba Campina Grande Pocos de Caldas Ermelino Matarazzo, Sao Paulo Campinas Ivoti | | 3413
720
431
395
388
384
898
197 | 67.6
69.5
70.1
61.4
67.2
69.3
70.1 | ≥ 65 73.9 | Probability
sampling | Fried phenotype* | 9.0
10.8
9.7
8.9
9.3
8.1
7.7
8.6 | 51.9
48.2
55.5
51.4
53.4
54.9
52.2
47.7 | Measures were taken to avoid the systematic distortions of data. i.e. encouraging participation of the elderly, standardization of procedures, instruments and equipment, comprehensive training of staff in all locations, procedures were adopted to ensure greater reliability of data entered in the electronic | More female representation in the study sample limited the generalizability of results. Loss of information during the data collection could affect the reliability of data. Study participation in Ivoti was lower than expected due to the problems of time and transport. | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants'
mean age/Age | Sampling technique | Frailty assessment | Prevaler
95% | | Study strengths reported by | Study limitations reported by | |---|---------|--|---|------------------|----------|-------------------------------|---|---------------------|-----------------|-----------------|-----------------------------|---| | publication* | | setting/time
period | | • | | range (years) | • | method | frailty | pre-
frailty | authors | authors | | Neri et al,
2013 ¹² cont. | | | | | | | | | | | banks. | Selection of older people without cognitive impairment and required to attend to the data collection site by their own might have introduced the survival bias into the study. | | Vieira et al,
2013 ¹³ | Brazil | FIBRA-Belo
Horizonte, Minas
Gerais State
Conducted from
December 2008 to
September 2009 | Population
based cross
sectional study | 601 | 66.2 | ≥ 65 (74.3±6.4) | Probability
sampling | Fried
phenotype* | 8.7 | 46.3 | - | Phenotype limits the evaluation of possible frail elderly with cognitive impairment, gait restriction, severe motor sequale. Use of Minnesota Questionnaire of Physical Activities and Leisure is not fitting with the Brazilian cultural context. | | Ricci et al,
2014 ¹⁴ | Brazil | FIBRA- Barueri
and Cuiaba urban
municipalities | Cross sectional
population
based study | 761 | 64.3 | ≥ 65
(71.9±5.9) | Census of
older adults in
27 census
tracts | Fried
phenotype* | 9.7 | 48.0 | - | The phenotype used in the study basically comprised of physical frailty and not include other markers such as cognitive decline and psychosocial aspects. | | Silveira et al,
2015 ¹⁵ | Brazil | Uberaba, Minas
Gerais
Conducted from
July to October
2011 | Analytical
observational
cross sectional
study | 54 | 59.3 | \geq 65 (72.9±6.0) | Random
sampling | Fried
phenotype* | 11.1 | 46.2 | - | - | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants'/
Mean age/Age | Sampling technique | Frailty assessment | Prevaler
95% | nce (%),
% CI | Study strengths reported by | Study limitations reported by | |--|---------|---|--------------------------|-------------------|----------------------|--------------------------------|--|---------------------|----------------------|----------------------
---|--| | publication* | | setting/time
period | | | | range (years) | | method | frailty | pre-
frailty | authors | authors | | Calado et al,
2016 ¹⁶ | Brazil | FIBRA-Ribeirão
Preto, state of São
Paulo | Cross sectional study | 385 | 64.7 | ≥65
(73.9 ± 6.5) | Random
sampling | Fried
phenotype* | 9.1 | 49.6 | - | Cross-sectional nature of the study does not allow any temporal relationship between the variables to be established. And also, this design is subject to survival bias, which could lead to underestimation of the associations observed. | | | | | | | | | | | | | Study has excluded
patients who were
already known to
be dependent. This
may have affect the
prevalence of
frailty. | | | Augusti et al,
2017 ¹⁷ | Brazil | Amparo, in the state of São Paulo | Cross-sectional study | 306 | 60.2 | \geq 65 (72.6± 5.7) | Random sampling | Fried phenotype* | 21.5 | 71.6 | - | - | | Ferriolli et al,
2017 ¹⁸ | Brazil | Recife Juiz de Fora Fortaleza | Cross-sectional study | 556
412
481 | 70.6
69.6
67.9 | | Probability
sampling | Fried phenotype* | 12.1
15.5
10.4 | 66.9
63.1
63.6 | - | Cannot establish
the causal nexus
between the
studied variables
and frailty due to
the cross-sectional
design. | | | | | | | | | | | | | | The method used to assess body composition of older adults is debatable. | | Grden et al,
2017 ¹⁹ | Brazil | Area covered by
three basic health
units belong to the
Boa Vista
Sanitary District, | Cross-sectional
study | 243 | 66.3 | ≥80
(84.4±3.8) | Proportional
stratified
sampling | Fried
phenotype* | 14.8 | 63.8 | - | Cross-sectional design is a limiting factor in evaluating cause and effect relationships. | | Authors and
year of
publication* | Country | Data
source/study
setting/time
period | Study design | Effective sample | Female % | Participants'/
Mean age/Age
range (years) | Sampling
technique | Frailty
assessment
method | | nce (%),
% CI
pre-
frailty | Study strengths reported by authors | Study limitations
reported by
authors | |--|----------|--|--|------------------|----------|---|-------------------------------------|---------------------------------|------|-------------------------------------|--|---| | Grden et al,
2017 ¹⁹ cont. | | in the city of
Curitiba, Paraná
Conducted from
January 2013 to
September 2015 | | | | | | | | | | This sample only represents the local community, and therefore the results cannot be extrapolated to other territories. | | Ocampo-
Chaparro et al,
2013 ²⁰ | Colombia | Commune 18,
City of Cali
(urban area)
Conducted in
2009 | Population
based cross
sectional study | 314 | 64.3 | ≥ 60 | Single stage
cluster
sampling | Fried
phenotype* | 12.7 | 71.3 | • | The study was conducted in a localized area and not in the entire city of Cali. And also study population did not include rural, institutionalized adults. Hence it limited the external validity of the findings | | Curcio et al, 2014 ²¹ | Colombia | Four villages located in the coffee growing zone of the Andese mountains, (rural area) Conducted in 2005 | Cross sectional study | 1878 | 52.2 | ≥ 60 (70.9±7.4) | Voluntary participation | Fried phenotype* | 12.2 | 53.0 | Sample size is large. Used comprehensive set of measurements. First study that measured the prevalence of frailty in older adults living in rural areas in the Latin American and Caribbean. Established the relationship between frailty, higher prevalence of chronic conditions and disabilities among elderly people in Latin America. | - | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants'/
Mean age/Age | Sampling technique | Frailty assessment | Prevaler
95% | | Study strengths reported by | Study limitations reported by | |--|----------|---|------------------------|------------------|----------|--------------------------------|--|---|-----------------|-----------------|--|---| | publication* | | setting/time
period | | • | | range (years) | • | method | frailty | pre-
frailty | authors | authors | | Samper-Ternent et al, 2016 ²² | Colombia | Data from Salud
Bienestar y Enve-
Jecimiento
(SABE) Bogota
study
Both urban and
rural areas of
Bogota
Data collected in
2012 | Cross sectional survey | 1442 | 61.0 | ≥ 60 (70.7±7.7) | Probabilistic sampling by clusters with block stratification | Fried phenotype* | 9.4 | 52.4 | First population based study of adults over 60 in Colombia to explore the conditions that affect their health and quality of life. Study followed the international guidelines previously used in other capital cities in Latin America and was modified to fit the social and historical situation of Colombia. Used constructs validated in similar populations for assessed frailty previously. | Modification to the frailty phenotype definition could introduce bias to the analysis. Large percentage of cohort from the current study was excluded as there was missing data for construction of frailty and sarcopenia variables (n=558). Excluded individuals were significantly different from study population which could introduce bias to the study. Some data are self-reported so recall bias could affect the results. | | Garcia-Pena et al, 2016 ²³ | Mexico | Mexican Health
and Aging Study
(MHAS)
Wave 3
Conducted in
2012 | Secondary
analysis | 1108 | 54.6 | ≥ 60
(69.8±7.6) | Probability
sampling | Fried
phenotype*
Frailty index-
32 variables | 24.9 | - | Large comprehensive dataset. Used previously validated frailty classifying tools. (Fried phenotype and frailty index) | The cut-off value to define frailty by frailty index was arbitrary although it was based on previous research. Included 32 deficits in frailty index as self-rated hearing and abdominal pain were not available in the 2012 wave. | | Authors and
year of
publication* | Country | Data
source/study
setting/time
period | Study design | Effective sample | Female
% | Participants'/
Mean age/Age
range (years) | Sampling
technique | Frailty
assessment
method | Prevaler
95%
frailty | | Study strengths
reported by
authors | Study limitations
reported by
authors | |--|---------|---|-----------------------------|------------------|-------------|---|-----------------------|---------------------------------|----------------------------|------|--|--| | Garcia-Pena et al, 2016 ²³ cont. | | | | | | | | | | | | Categorization of
physical activity in
Fried phenotype
was different from
previous reports. | | Sánchez-García
et al, 2017 ²⁴ | Mexico | Baseline
assessment
"Cohort of
Obesity,
Sarcopenia and
Frailty of Older
Mexican Adults"
(COSFOMA)
Mexico city
Conducted from
April to
September 2014 | Cross-sectional
analysis | 1252 | 59.9 | \geq 60 (68.5 ± 7.2) | Random
sampling | Fried
phenotype* | 11.2 | 50.3 | - | Cross-sectional design does
not establish a causal relationship between frailty and quality of life in the elderly. | | Moreno-
Tamayo et al,
2017 ²⁵ | Mexico | Rural Frailty Study (Prospective study) Follow up data collected in 2013 | Cross-sectional study | 657 | 52.9 | ≥70 (76.3 ± 3.3) | Random
sampling | Fried
phenotype* | 11.9 | 51.9 | Use of Fried's phenotype frailty assessment. | Cross-sectional
design does not
allow for drawing
conclusions about
the direction of
causality. | | Chen et al, 2015 ²⁶ | China | Data from a cross sectional study, Comprehensive Geriatric Assessment and Health Care Service Study Chengdu and Suining, Southwest China Conducted from October 2010 to August 2012 | Cross sectional study | 604 | 57.9 | ≥ 60
(70.6±6.8)
60-91 | Convenience sampling | Fried phenotype* | 12.7 | 56.5 | | Data must be interpreted with caution. The number of the participants was below 1000, although the study population was representative of the 60+ year old community dwelling adults in this specific area. The information about disease and some of the frailty items measurements were taken through | | Authors and
year of
publication* | Country | Data
source/study
setting/time
period | Study design | Effective sample | Female
% | Participants'/
Mean age/Age
range (years) | Sampling
technique | Frailty
assessment
method | | | Study strengths
reported by
authors | Study limitation
reported by
authors | |---|---------|--|---|------------------|-------------|---|---------------------------------------|---------------------------------|-----|------|---|--| | Chen et al,
2015 ²⁶ cont. | | | | | | | | | | | | self-reported questionnaires. | | | | | | | | | | | | | | Older people wh
refused to
participate had
lower level of
functionality wh
might have
nonresponse bias
or selection bias. | | | | | | | | | | | | | | Present study ha
only included Hapeople. Therefor
conclusions mig
not generalizable
other ethnic
populations. | | Wu et al, 2017 ²⁷ | China | The China Health
and Retirement
Longitudinal
Study
28 provinces in
China
(2011-2012) | Baseline survey
of an ongoing
longitudinal
study | 5290 | 49.0 | ≥60
(69.2±7.0) | Multistage
probability
sampling | Fried phenotype* | 6.3 | 51.3 | First study that utilized the Fried phenotype of frailty scale to examine prevalence of frailty in a nationally representative sample of noninstitutionalize d Chinese adults aged 60 years or older. Constructed cutpoints for define five physical frailty phenotype | populations. This study does include the nursi home residents. Therefore, there a possibility of underestimating prevalence of frailty among the entire Chinese elderly population. However, it is worthy to note the only 1.5% of old adults live in nursing homes in China. All five frailty components wer | | | | | | | | | | | | | criteria in Chinese
elders. First study that
examined the
regional variation | only measured
once; these
measures may v
over time. | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female
% | Participants'/
Mean age/Age | Sampling
technique | Frailty assessment | Prevaler
95% | | Study strengths reported by | Study limitations reported by | |--|----------|---|------------------------------------|------------------|--------------|--|--------------------------------------|---------------------|-----------------|-----------------|---|--| | publication* | | setting/time
period | | • | | range (years) | • | method | frailty | pre-
frailty | authors | authors | | Wu et al, 2017 ²⁷ cont. | | | | | | | | | | | in frailty in mainland China. First study that investigated the association of biomarkers with frailty among Chinese older adults. | Unable to establish
a causal association
of chronic
conditions and
disability with
frailty because the
study is a cross-
sectional analysis | | Dong et al,
2017 ²⁸ | China | Jinan City,
Shandong
Province, Eastern
China
Conducted from
July to December | Cross-sectional
study | 1188
1215 | 69.1
69.5 | ≥60
(69.5±6.7)
60-95 | Multistage
stratified
sampling | Fried
phenotype* | 3.9
17.4 | 45.9
21.5 | - | Generalizability of
the results should
be treated
cautiously because
the participants
were just from one | | Wang et al, 2015 ²⁹ | China | 2016 Changsha city and its surrounding area Conducted from August 2012 to August 2014 | • | 316 | 48.1 | ≥ 65
(75.6±4.8)
(men)
(76.9±5.2)
(women) | • | Fried phenotype* | 14.2 | 49.1 | Participants were recruited from a community based elderly population. | city in China. Individuals were originally excluded if unable to walk without assistance of another person, or their renal function and liver function is abnormal, or their heart function classification is grades III and IV according to New York Heart Association standard. This may have biased the results towards an underestimation of the risk of frailty associated with sarcoosteopenia | | Badrasawi et al,
2017 ³⁰ | Malaysia | Neuroprotective
model for healthy
longevity among
Malaysian older
adults | Part of a
longitudinal
study | 473 | 55.6 | ≥60
(68.2±5.8) | Multistage
random
sampling | Fried
phenotype* | 8.9 | 61.7 | - | Use of original Fried's cut-off values for grip strength and gait speed. | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants'/
Mean age/Age | Sampling technique | Frailty assessment | Prevaler
95% | | Study strengths reported by | Study limitations reported by | |--|---------|---|-----------------------|------------------|----------|--------------------------------|--|---|-----------------|-----------------|---|---| | publication* | | setting/time
period | | | | range (years) | _ | method | frailty | pre-
frailty | authors | authors | | Badrasawi et al,
2017 ³⁰ cont. | | Conducted from
5th July 2013 to
22nd February
2014 | | | | | | | | | | Causal relationships should be interpreted with caution since the study is cross-sectional. | | Kashikar et al, 2016 ³¹ | India | Warje-
Karvenagar, Pune
city | Cross-sectional study | 250 | 50.0 | ≥65
(73.9± 6.4) | Multi stage
random
sampling | Fried
phenotype* | 26.0 | 63.6 | - | - | | Gurina et al,
2011 ³² | Russia | Data from "Crystal" prospective cohort study Kolpino district of St. Petersburg | Cross sectional study | 611 | 71.7 | \geq 65 (75.1±5.9) | Random
sample
stratified by
age | Fried phenotype* (whole study population) | 21.1 | 63.0 | Analysis provides
a better
understanding of
the health status
of older adults in
Russia. | Cross sectional
analysis is not
adequate for frailty
analysis as this
phenotype is more
dynamic than | | | | Conducted from
March to
December 2009 | | | | | | phenotype* (adjusted for MMSE score <18, Parkinson's disease, and stroke) | 17.9 | 65.5 | Russia. | static. The prognostic significance of the different frailty indicators and models will become clearer after the follow up | | | | | | | | | | Steverink—
Slaets model,
Groningen
Frailty
Indicator | 32.6 | 24.7 | | data are analysed. The tested frailty models were modified by using proxies for some of | | | | | | | | | | Extended Puts
model | 43.9 | 42.9 | | the original indicators. | | | | | | | | | | | | | | Findings can be generalized to the whole population of St. Petersburg only with caution, the Kolpino district represents one of the 18 districts of the city. | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants'/
Mean age/Age | Sampling technique | Frailty assessment | | nce (%),
% CI | Study strengths reported by | Study limitations reported by |
--|---|--|--|------------------|----------|---|--|---------------------|---------|------------------|---|--| | publication* | | setting/time
period | | _ | | range (years) | _ | method | frailty | pre-
frailty | authors | authors | | Alvarado et al, 2008 ³³ | Barbados
Brazil
Chile
Cuba
Mexico | Health, Wellbeing
and Ageing study
(SABE) study
Conducted from
1999 to 2000 | Multi centric
cross sectional
study | 7334 | - | ≥ 60 | Multi-staged
sampling | Fried
phenotype† | - | - | - | Operationalization
of Fried phenotypic
criteria is different
from the original
Cardiovascular
Health Study | | | | Bridgetown,
Barbados | | 1446 | 61.1 | | | | 26.7 | 54.4 | | (CHS) of Fried et al, 2001. And also, | | | | São Paulo, Brazil | | 1879 | 59.3 | | | | 40.6 | 48.8 | | possible | | | | Santiago de Chile,
Chile | | 1220 | 66.1 | | | | 42.6 | 51.4 | | background risk
differences
(cultural and other | | | | Havana, Cuba | | 1726 | 62.7 | | | | 39.0 | 51.6 | | social biological | | | | Mexico, DC,
Mexico | | 1063 | 60.4 | | | | 39.5 | 49.0 | | factors) may limit
the comparison of
this study results
with other studies. | | Aguilar-
Navarro et al,
2015 ³⁴ | Mexico | Subset from
Mexican Health
and Aging Study
(MHAS)
Wave 1
Conducted in
summer of 2001 | Longitudinal
study (cross
sectional data) | 5644 | 53.6 | ≥ 60
(68.7±6.9) | Random
sample | Fried
phenotype† | 37.2 | 51.3 | Population based design. Large sample size. | Operationalization of Fried phenotypic criteria is different from the original CHS of Fried et al, 2001. The original metrics were not available in the MHAS cohort. It could results possible overestimation of prevalence of frailty. | | Avila-Funes et al, 2016 ³⁵ | Mexico | Subset of Mexican
Study of
Nutritional and
Psychosocial
Markers of Frailty
(prospective
cohort study)
Coyoacán cohort
Conducted from
April 2008 to July
2009 | Cross-sectional
study using the
data of
prospective
cohort study | 927 | 54.9 | ≥ 70
Median age-
76.5
70.3-104.4 | Random
sampling
stratified by
age and sex | Fried
phenotype† | 14.1 | 37.3 | Population based
sample, from a
cohort specifically
designed to
identify the
correlates of
frailty. | Recruitment was carried out in only one district of Mexico city, therefore these results might not be representative of rural areas of Mexico. | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants/
Mean age/Age | Sampling technique | Frailty assessment | | nce (%),
% CI | Study strengths reported by | Study limitations reported by | |--|---------|---|--|------------------|----------|---|---|------------------------------------|---------|------------------|--|--| | publication* | | setting/time
period | | | | range (years) | | method | frailty | pre-
frailty | authors | authors | | Sanchez-Garcia et al, 2014 ³⁶ | Mexico | Data from Study
on Aging and
Dementia in
Mexico (SADEM)
Conducted from
September 2009
to March 2010 | Not mentioned in the article | 1933 | 58.0 | ≥ 60
70.1±7.1
(women)
71.7±7.4 (men) | Random
sample from
original
database | Fried
phenotype‡ | 15.7 | 33.3 | • | Definitions used to
evaluate frailty and
pre-frailty. | | Akin et al,
2015 ³⁷ | Turkey | Kayseri (urban
area)
Data of Kayseri
Elderly Health
Study (KEHES)
Kayseri
Conducted from
August to
December 2013 | Cross sectional
population
based study | 848 | 50.6 | ≥ 60
(71.5±5.6) | Stratified
random
sampling and
any
Individual
older than 60
years who
requested to
participate
was also
included. | Fried
phenotype‡
FRAIL scale | 27.8 | 34.8
45.6 | - | Absence of physical activity in this study may have under or overestimated the prevalence of frailty. Relatively small sample size of elderly participants aged ≥ 85 years. | | Zhu et al, 2016 ³⁸ | China | Cross sectional data from the ageing arm of the Rugao Longevity and Ageing Study 31 villages in Jiang'an township, Rugao city Conducted from November 2014 to December 2014 | - | 1478 | 53.0 | ≥ 70
(75.3±3.9)
70-84 | Random
sampling | Fried phenotype‡ | 12.0 | 42.9 | Representativenes s of the study participants increases the generalisabality of the findings. The study participants were randomly selected with a higher participant rate (91.2%) representing approximately 16% of the elderly in Jiang'an township. The Findings from such a representative population based sample might be generalisable to most elderly people in China. | | | Authors and vear of | Country | Data
source/study | Study design | Effective sample | Female % | Participants/
Mean age/Age | Sampling technique | Frailty assessment | | nce (%),
% CI | Study strengths reported by | Study limitations reported by | |------------------------|---|--|---------------------------|------------------|----------|-------------------------------|--------------------|--|--------------|------------------|--|--| | publication* | | setting/time
period | | sample | /0 | range (years) | technique | method | frailty | pre-
frailty | authors | authors | | al, 2015 ³⁹ | China
Mexico
Peru Cuba
Dominican
Republic
Venezuela
India | 10/66 Dementia
Research Group's
(10/66 DRG)
population based
studies of ageing
and dementia in
LMICs
Data collected
between 2003 and
2007 | Cross sectional
survey | 12373 | 62.3 | ≥ 65
(74.1±7.0) | Census | Fried phenotype‡ Multi dimentional frailty model | 17.5
29.1 | - | Study was conducted with large population based cohorts in Latin America, India and China allowing to assess the consistency or cultural specificity of the observed | Hand grip strength
was not measured
in this study.
Hence physical
frailty construct is
only an
approximation to
the original Fried
definition. The
impact of this | | | | China (Urban) | | 989 | 56.6 | (74.1±6.3) | | Fried | 7.8 | - | associations. | omission is | | | | China (Rural) | | 1002 | 55.5 | (72.4 ± 6.0) | | phenotype‡ | 8.7 | - | Study design was | difficult to assess. | | | | Cuba (Urban) | | 2637 | 65.0 | (75.2±7.1) | | | 21.0 | - | prospective, | | | | | Dominican | | 1706 | 66.3 | (75.4 ± 7.6) | | | 34.6 | - | limiting information bias | | | | | Republic (Urban)
India (Urban) | | 748 | 57.2 | (71.4±6.1) | | | 11.4 | - | with modest attrition. | | | | | Mexico (Urban) | | 909 | 66.5 | (74.4 ± 6.6) | | | 10.1 | - | 337 11 ' 1 | | | | | Mexico (Rural) | | 933 | 60.9 | (74.1±6.6) | | | 8.5 | - | Walking speed,
under nutrition | | | | | Peru (Urban) | | 1245 | 64.7 | (75.0 ± 7.4) | | | 25.9 | - | and cognitive impairment were | | | | | Peru (Rural) | | 507 | 53.2 | (74.1±7.3) | | | 17.2 | - | measured | | | | | Venezuela
(Urban) | | 1697 | 63.2 | (72.3 ± 6.8) | | | 11.0 | - | objectively. | | | | | China (Urban) | | 989 | 56.6 | (74.1±6.3) | | Multi | 11.3 | - | Visual and auditory | | | | | China (Rural) | | 1002 | 55.5 | (72.4 ± 6.0) | | dimentional
frailty model | 22.5 | - | impairment have | | | | | Cuba (Urban) | | 2637 | 65.0 | (75.2 ± 7.1) | | | 33.7 | - | been assessed by objective testing. | | | | | Dominican
Republic (Urban) | | 1706 | 66.3 | (75.4±7.6) | | | 47.8 | - | <i>9</i> | | | | | India (Urban) | | 748 | 57.2 | (71.4±6.1) | | | 26.1 | - | | | | | | Mexico (Urban) | | 909 | 66.5 |
(74.4 ± 6.6) | | | 22.9 | - | | | | | | Mexico (Rural) | | 933 | 60.9 | (74.1±6.6) | | | 36.2 | - | | | | | | Peru (Urban) | | 1245 | 64.7 | (75.0 ± 7.4) | | | 28.2 | - | | | | | | Peru (Rural) | | 507 | 53.2 | (74.1±7.3) | | | 25.6 | - | | | | | | Venezuela
(Urban) | | 1697 | 63.2 | (72.3±6.8) | | | 20.0 | - | | | | Authors and
year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants/
Mean age/Age | Sampling technique | Frailty assessment | | nce (%),
% CI | Study strengths reported by | Study limitations reported by | |--|---------|---|--|------------------|----------|-------------------------------|---|-------------------------|---------|------------------|--|--| | publication* | | setting/time
period | | • | | range (years) | • | method | frailty | pre-
frailty | authors | authors | | Fhon et al, 2012 ⁴⁰ | Brazil | Municipality of
Ribeirao Preto,
Sao Paulo
Conducted from
November 2010 to
February 2011 | Cross sectional study | 240 | 62.9 | \geq 60 (73.5±8.4) | Two stage
conglomerate
sampling | Edmonton frail
scale | 39.2 | 24.6 | - | - | | Agreli et al,
2013 ⁴¹ | Brazil | Embu, City in
metropolitan
region of Sao
Paulo
Conducted from
June to July 2010 | Observational
descriptive
cross sectional
study | 103 | 62.1 | ≥ 60
(68.9±7.8)
60-103 | Simple
random
sampling | Edmonton frail scale | 30.1 | 22.3 | - | Older adults who did not respond to the clock test could not classify for their degree of frailty. | | Duarte et al, 2013 ⁴² | Brazil | This study is a sub project of the survey "Living conditions, health and ageing: a comparative study" City of Joao Pessoa, the state capital of Paraiba Conducted from April to June 2011 | Cross sectional study | 166 | 100.0 | ≥ 60
(73.0±6)
60-96 | Two staged
cluster
sampling | Edmonton frail
scale | 39.2 | 21.7 | - | , <u>-</u> | | Del Brutto et al,
2016 ⁴³ | Ecuador | Atahualpa, a rural
village of costal
Ecuador | Cross sectional
population
based study | 298 | 57.0 | ≥ 60 (70.0±8.0) | Individuals
identified
through
yearly door-
to-door
survey | Edmonton frail
scale | 31.2 | 22.0 | Population based design. Lack of selection bias. Used a reliable instrument to identify frailty. | - | | Fabricio-Wehbe et al, 2009 ⁴⁴ | Brazil | Ribeirao Preto,
Sao Paulo
Conducted from
September 2007
to June 2008 | - | 137 | 74.5 | ≥ 65
(75.3±8.0)
65-100 | Probabilistic sampling | Edmonton frail scale | 31.4 | 20.4 | - | - | | Carneiro et al,
2016 ⁴⁵ | Brazil | City of Montes
Claros, northern
Minas Gerais
Conducted from
May to July 2013 | Cross-sectional study | 511 | 64.0 | ≥65
(74.0±7.1) | Two stage
cluster
sampling | Edmonton frail
scale | 41.3 | - | Representative sample. | Losses or refusals
were compensated
by adding new
older adults.
However, more
active older adults | | Authors and
year of
publication* | Country | Data
source/study
setting/time
period | Study design | Effective sample | Female % | Participants/
Mean age/Age
range (years) | Sampling
technique | Frailty
assessment
method | Prevalence (%),
95% CI
frailty pre-
frailty | Study strengths
reported by
authors | Study limitations
reported by
authors | |---|---------|---|-----------------------|-----------------------------------|--------------|--|-----------------------------------|---------------------------------|--|---|---| | Carneiro et al,
2016 ⁴⁵ cont. | | | | | | | | | | | who were probably without frailty were not found at home during the visits. This can limit the generalizability of the data. This is a cross-sectional study and cannot establish the temporal relationship among the observed associations. | | Bennett et al,
2013 ⁴⁶ | China | Longevity Study
(CLHLS)
22 provinces of
China | Secondary
analysis | 6300 | - | 80-99 | - | Frailty index
38 deficits | FI≤ 0.05-15.0
0.05< FI≤ 0.15-
53.2
0.15< FI≤ 0.25-
20.2
0.25< FI≤ 0.35-
6.7
0.35< FI≤ 0.45-
3.3
FI>0.45-1.6 | - | The baseline cohort included 36% centenarians and they have been excluded from the analysis. Hence, results should be interpreted with caution. | | Woo et al,
2015 ⁴⁷ | China | Data from Beijing Longitudinal Study of Aging II (BLSA II) Three urban districts (Xuanwu, Xicheng and Dongcheng) and one rural county (Shunyi) from the 18 administrative districts or counties in Beijing Participants were recruited from July to November 2009 | - | 6320
(urban)
978
(rural) | 61.5
57.2 | ≥ 65 74.6±5.6 (men) 73.8±5.2 (women) (74.8±5.7) (men) (73.9±5.0) (women) | Multistage
cluster
sampling | Frailty index
34 variables | 5.2 - | _ | - | | Authors and
year of
publication* | Country | Data
source/study
setting/time
period | Study design | Effective sample | Female
% | Participants/
Mean age/Age
range (years) | Sampling
technique | Frailty
assessment
method | Prevalence (%),
95% CI
frailty pre-
frailty | Study strengths
reported by
authors | Study limitations
reported by
authors | |--|----------|--|-------------------------------------|------------------|-------------|--|--|--|--|---|--| | Hao et al,
2016 ⁴⁸ | China | Data from Project
of Longevity and
Aging in
Dujiangyan
Dujiangyan
region, Sichuan
province | Cross sectional
study | 767 | 68.0 | ≥ 90
(93.7±3.4)
90-108 | Based on a
census of
older people
above 90
years | Frailty index
35 variables | 61.8 | Frailty index does
not rely on
specific set of
variables. Hence
evaluation of
frailty is more
feasible. | Data needed to be interpreted with caution. The number of participants who gave the consent is still limited. The study population clearly represent a survivor group. | | Sathasivam et al, 2015 ⁴⁹ | Malaysia | Urban district | Multistage cross
sectional study | 789 | 59.4 | ≥ 60
(69.6±7.2) | Multi stage
random
sampling | Frailty index
40 variables | 5.7 67.7 | Population based study. | There are no normative values that have been consensually established to date to define severity of frailty levels in Malaysia. Findings cannot be generalised to other ethnic groups from similar middle income countries. | | García-
González et al,
2009 ⁵⁰ | Mexico | Mexican Health
and Aging Study
(MHAS)
Wave 1 | Follow up study | 4082 | 52.5 | ≥65
(73.0) | Probabilistic sample | Frailty index
(FI) -34
variables | 5 FI levels
.0007-17.4
.0714-30.8
.1421-24.0
.2135-21.4
.3565-6.5 | - | - | | Perez-Zepeda et al, 2016 ⁵¹ | Mexico | Data from
nationwide survey
representing urban
and rural areas,
Mexican Survey
on Nutrition and
Health
(ENSANUT),
2012 | Cross sectional
analysis | 7108 | 54.7 | ≥ 60
(70.7±8.1) | Multistage
stratified
sampling | Frailty index-44
variables | 45.2 - | - | - | | Authors and year of | Country | Data
source/study | Study design | Effective sample | Female % | Participants/
Mean age | Sampling technique | Frailty assessment | Prevaler
95% | | Study strengths reported by | Study limitations reported by | |--|------------|---|--|------------------|----------|---------------------------|-------------------------------------|---|---|-----------------
--|--| | publication* | | setting/time
period | | | | - | _ | method | frailty | pre-
frailty | authors | authors | | de Leon
Gonzalez,
2015 ⁵² | Mexico | Mexican Health
and Aging Study
(MHAS)
Wave 1 | - | 4729 | - | ≥60 | - | FRAIL scale | 10.4 | 44.8 | Large sample size
of men and
women living in
the community. | Participants who did not complete the performance measures in the population study, and did not include in the present analysis are expected to be less healthy and more likely to die. This increases the possibility of survival bias. | | Rosero-Bixby et al, 2009 ⁵³ | Costa-Rica | Costa Rican Study
on Longevity and
Healthy Aging
(CRELES) | - | 2704 | - | ≥ 60 | Random
sampling | Physical frailty
using five
physical tests | 17.8
(60-79
years
57.0
(80+
years) | - | - | - | | Galban et al,
2009 ⁵⁴ | Cuba | Antonio Maceo,
Cerro
municipality,
Havana, Cuba
Data collected in
2005 | Observational
descriptive
cross sectional
study | 541 | 58.0 | ≥ 60 | - | Geriatric Functional Assessment Scale was applied to classify the participants to frail and non- frail groups according to Cuban frailty criteria | 51.4 | - | - | <u>-</u> | | Boulos et al,
2016 ⁵⁵ | Lebanon | Rural areas
Conducted from
March 2011 to
2012 | Cross sectional
study | 1120 | 50.8 | ≥ 65
(75.7±7.1) | Multi staged
cluster
sampling | Study of
Osteoporotic
Fractures (SOF)
frailty index | 36.4 | 30.4 | Results may be generalisable to rural Lebanese elderly as study involved large representative sample with high response rate. This is the first study reporting estimates about | First part of questionnaire was based on self-reported information which might be affected by memory and education bias due to educational disparities. | | Authors and
year of
publication* | Country | Data
source/study
setting/time
period | Study design | Effective sample | Female % | Participants/
Mean age | Sampling
technique | Frailty
assessment
method | | nce (%),
% CI
Pre-
frailty | Study strengths
reported by
authors | Study limitations
reported by
authors | |---|----------|--|---------------------|------------------|----------|---------------------------|-----------------------------------|--|-----|-------------------------------------|---|--| | Boulos et al,
2016 ⁵⁵ cont. | | • | | | | | | | | | frailty and
associated factors
in elderly
Lebanese
community
dwellers. | Cognitive impairment might affect the accuracy of the SOF index and underestimate the frailty. | | | | | | | | | | | | | Data collection for
frailty was based
on a widely used
and well validated
instrument. | Widely used Fried phenotype was not used in this study due to the difficulty of performing the walking test (possible space constraints and lack of standardized conditions in Lebanese rural households.) | | Gray et al,
2017 ⁵⁶ | Tanzania | Six villages in
the rural Hai
District of
northern Tanzania | Follow up
cohort | 941 | 55.8 | ≥70
(77.2± 6.4) | Census of
selected
villages | Brief Frailty
Instrument for
Tanzania
(B-FIT) | 4.6 | 13.4 | The screening tool could be administered without the need of any specialist knowledge or training and may be suited for use in low-resource settings. | The B-FIT requires
further assessment
of its face, content,
and constructs
validity, and the
inclusion of a
broader range of
items should be
considered. | References for the tables in appendix B and C are listed at the end of this document. ^{*}Fried phenotype with five criteria-weakness and slowness assessed using objective tests †Fried phenotype with five criteria-weakness and slowness assessed using self-reported questions (subjective) ‡Fried phenotype with four criteria Appendix D: Random effects pooled prevalence of frailty and prefrailty stratified by frailty assessment method | Frailty assessment method | Number of studies (estimates) | Number of participants | Pooled prevalence (%) | 95% CI
(%) | Cochran's
Q | Degrees of freedom | p value | I ² (%) | |--|-------------------------------|------------------------|-----------------------|---------------|----------------|--------------------|--------------|--------------------| | Frailty | | | | | | | | | | Fried phenotype with 5 criteria-
weakness and slowness assessed using
objective tests | 30 (38) | 27623 | 12.7 | 10.9-14.5 | 709.9 | 37 | <0.001 | 94.8 | | Fried phenotype with 5 criteria-
weakness and slowness assessed using
self-reported questions (subjective) | 3 (7) | 13905 | 33.8 | 27.6-40.4 | 359.1 | 6 | < 0.001 | 98.3 | | Fried phenotype with only 4 criteria | 4 (13) | 16632 | 15.6 | 11.4-20.3 | 772.1 | 12 | < 0.001 | 98.4 | | Edmonton Frail Scale | 6 (6) | 1455 | 35.9 | 31.7-40.2 | 13.1 | 5 | 0.022 | 61.9 | | Frailty index | 4(5) | 16303 | 18.0 | 5.8-35.0 | 2085.5 | 4 | < 0.001 | 99.8 | | FRAIL scale | 3 (3) | 6841 | 12.4 | 8.4-17.1 | Not computed | 2 | < 0.001 | Not computed | | Multi-dimensional frailty model | 1 (10) | 12373 | 26.9 | 20.6-33.8 | 628.8 | 9 | < 0.001 | 98.6 | | Pre-frailty | , , | | | | | | | | | Fried phenotype with 5 criteria-
weakness and slowness assessed using
objective tests | 30 (38) | 27623 | 55.2 | 53.3-57.1 | 360.6 | 37 | < 0.001 | 89.7 | | Fried phenotype with 5 criteria-
weakness and slowness assessed using
self-reported questions (subjective) | 3 (7) | 13905 | 49.2 | 46.0-52.4 | 79.5 | 6 | < 0.001 | 92.5 | | Fried phenotype with only 4 criteria | 3 (3) | 4259 | 37.0 | 30.9-43.3 | Not computed | 2 | Not computed | Not computed | | Edmonton Frail Scale | 5 (5) | 944 | 22.3 | 19.7-25.0 | 1.0 | 4 | 0.907 | 0.0 | | FRAIL scale | 3 (3) | 6841 | 38.9 | 27.6-50.7 | Not computed | 2 | Not computed | Not computed | Appendix E: Pooled prevalence of frailty and prefrailty by five years age categories for studies used Fried phenotype with five criteria where weakness and slowness assessed using objective tests | Age
category | Number
of studies | Number of participants | Pooled prevalence (%) | 95% CI
(%) | Cochran's
Q | Degrees
of
freedom | p value | I ² (%) | |-----------------|----------------------|------------------------|-----------------------|---------------|----------------|--------------------------|---------|--------------------| | Frailty | | | (, ,, | | | | | | | 60-64 | 13 | 4386 | 6.2 | 4.0-8.8 | 100.4 | 12 | < 0.001 | 88.1 | | 65-69 | 21 | 6437 | 8.2 | 6.3-10.3 | 138.2 | 20 | < 0.001 | 85.5 | | 70-74 | 22 | 5666 | 10.3 | 8.2-12.6 | 136.4 | 21 | < 0.001 | 84.6 | | 75-79 | 22 | 4121 | 15.4 | 12.6-18.4 | 115.6 | 21 | < 0.001 | 81.3 | | 80-84 | 22 | 2329 | 22.6 | 18.5-26.9 | 97.7 | 21 | < 0.001 | 78.5 | | 85+ | 22 | 1249 | 29.8 | 25.6-34.2 | 42.1 | 21 | 0.004 | 50.1 | | Pre-frailty | 7 | | | | | | | | | 60-64 | 13 | 4386 | 52.3 | 47.9-56.8 | 86.7 | 12 | < 0.001 | 86.2 | | 65-69 | 21 | 6437 | 53.5 | 49.8-57.1 | 148.1 | 20 | < 0.001 | 86.5 | | 70-74 | 22 | 5666 | 54.8 | 51.6-57.9 | 100.6 | 21 | < 0.001 | 79.1 | | 75-79 | 22 | 4121 | 57.0 | 55.0-59.1 | 30.6 | 21 | 0.080 | 31.5 | | 80-84 | 22 | 2329 | 57.9 | 55.5-60.3 | 25.8 | 21 | 0.213 | 18.7 | | 85+ | 22 | 1249 | 59.3 | 55.9-62.6 | 25.4 | 21 | 0.229 | 17.4 | Appendix F: Pooled prevalence of frailty by age and sex for studies using all five Fried phenotype criteria with objective assessment for weakness and slowness Appendix G: Pooled prevalence of prefrailty by age and sex for studies using all five Fried phenotype criteria with objective assessment for weakness and slowness **Appendix H:** Random effects pooled prevalence of frailty among community dwelling older adults in high income countries **Appendix I:** Random effects pooled prevalence of frailty among community dwelling older adults in middle income countries (only with the studies of minimum recruitment age 65 years) **Appendix J:** Random effects pooled prevalence of prefrailty among community dwelling older adults in high income countries **Appendix K:** Random effects pooled prevalence of prefrailty among community dwelling older adults in middle income countries (only with the studies of minimum recruitment age 65 years) ## References for the tables in appendix B and C - 1. Tribess S, Júnior JSV, de Oliveira RJ. Physical activity as a predictor of absence of frailty in the elderly. *Rev Assoc Med Bras* 2012;58(3):341-47. - 2. De Andrade FB, Lebrao ML, Santos JLF, et al. Relationship between oral health and frailty in community-dwelling elderly individuals in Brazil. *Journal of the American Geriatrics Society* 2013;61(5):809-14. doi: http://dx.doi.org/10.1111/jgs.12221 - 3. Júnior WMR, Carneiro JAO, da Silva Coqueiro R, et al. Pre-frailty and frailty of elderly residents in a municipality with a low Human Development Index. *Revista Latino-Americana de Enfermagem (RLAE)* 2014;22(4):654-61 8p. doi:
10.1590/0104-1169.3538.2464 - 4. Pegorari MS, dos Santos Tavares DM. Factors associated with the frailty syndrome in elderly individuals living in the urban area. *Revista Latino-Americana de Enfermagem (RLAE)* 2014;22(5):874-82 9p. doi: 10.1590/0104-1169.0213.2493 - 5. Corona LP, Drumond Andrade FC, de Oliveira Duarte YA, et al. The Relationship between Anemia, Hemoglobin Concentration and Frailty in Brazilian Older Adults. *The journal of nutrition, health & aging* 2015;19(9):935-40. doi: http://dx.doi.org/10.1007/s12603-015-0502-3 - 6. Santos PHS, Fernandes MH, Casotti CA, et al. The profile of fragility and associated factors among the elderly registered in a Family Health Unit. *Ciencia & Saude Coletiva* 2015;20(6):1917-24. doi: 10.1590/1413-81232015206.17232014 - 7. Closs VE, Ziegelmann PK, Gomes I, et al. Frailty and geriatric syndromes in elderly assisted in primary health care. *Acta sci, Health sci* 2016;38(1):9-18. - 8. Mello AC, Carvalho MS, Alves LC, et al. [Food consumption and anthropometry related to the frailty syndrome in low-income community-living elderly in a large city]. [Portuguese]. *Cadernos de Saude Publica* 2017;33(8):21. - 9. de Albuquerque Sousa ACP, Dias RC, Maciel TCC, et al. Frailty syndrome and associated factors in community-dwelling elderly in Northeast Brazil. *Archives of Gerontology and Geriatrics* 2012;54(2):e95-e101. doi: http://dx.doi.org/10.1016/j.archger.2011.08.010 - 10. dos Santos Amaral FLJ, Guerra RO, Nascimento AFF, et al. Social support and the frailty syndrome among elderly residents in the community. *Ciencia & Saude Coletiva* 2013;18(6):1835-46. - 11. Moreira VG, Lourenco RA. Prevalence and factors associated with frailty in an older population from the city of Rio de Janeiro, Brazil: The FIBRA-RJ Study. *Clinics* 2013;68(7):979-85. doi: http://dx.doi.org/10.6061/clinics/2013%2807%2915 - 12. Neri AL, Yassuda MS, de Araujo LF, et al. Methodology and social, demographic, cognitive, and frailty profiles of community-dwelling elderly from seven Brazilian cities: the FIBRA Study. *Cadernos de saude publica* 2013;29(4):778-92. - 13. Vieira RA, Guerra RO, Giacomin KC, et al. Prevalence of frailty and associated factors in community-dwelling elderly in Belo Horizonte, Minas Gerais State, Brazil: data from the FIBRA study. *Cadernos de saude publica* 2013;29(8):1631-43. doi: 10.1590/0102-311x00126312 - 14. Ricci NA, Pessoa GS, Ferriolli E, et al. Frailty and cardiovascular risk in community-dwelling elderly: a population-based study. *Clinical interventions in aging* 2014;9:1677-85. doi: http://dx.doi.org/10.2147/CIA.S68642 - 15. Silveira T, Pegorari MS, De Castro SS, et al. Association of falls, fear of falling, handgrip strength and gait speed with frailty levels in the community elderly. *Medicina (Ribeirão Preto)* 2015;48(6):549-56. - 16. Calado LB, Ferriolli E, Moriguti JC, et al. Frailty syndrome in an independent urban population in Brazil (FIBRA study): a cross-sectional populational study. *Sao Paulo Medical Journal* 2016;134(5):385-92. doi: 10.1590/1516-3180.2016.0078180516 - 17. Augusti ACV, Falsarella GR, Coimbra AMV. Análise da síndrome da fragilidade em idosos na atenção primária Estudo transversal. *Rev bras med fam comunidade* 2017;12(39):10.5712/rbmfc12(39)1353-10.5712/rbmfc12(39)1353. - 18. Ferriolli E, Pessanha F, Moreira VG, et al. Body composition and frailty profiles in Brazilian older people: Frailty in Brazilian Older People Study-FIBRA-BR. *Archives of Gerontology and Geriatrics* 2017;71:99-104. doi: 10.1016/j.archger.2017.03.008 - 19. Grden CRB, Lenardt MH, de Sousa JAV, et al. Associations between frailty syndrome and sociodemographic characteristics in long-lived individuals of a community. *Revista Latino-Americana De Enfermagem* 2017;25:1-8. doi: 10.1590/1518-8345.1770.2886 - 20. Ocampo-Chaparro JM, Zapata-Ossa HdJ, Cubides-Munevar ÃM, et al. Prevalence of poor self-rated health and associated risk factors among older adults in Cali, Colombia. *Colombia Medica* 2013;44(4):224-31 - 21. Curcio CL, Henao GM, Gomez F. Frailty among rural elderly adults. *BMC geriatrics* 2014;14:2. doi: http://dx.doi.org/10.1186/1471-2318-14-2 - 22. Samper-Ternent R, Reyes-Ortiz C, Ottenbacher KJ, et al. Frailty and sarcopenia in Bogota: results from the SABE Bogota Study. *Aging Clin Exp Res* 2016;31 doi: http://dx.doi.org/10.1007/s40520-016-0561-2 - 23. Garcia-Pena C, Avila-Funes JA, Dent E, et al. Frailty prevalence and associated factors in the Mexican health and aging study: A comparison of the frailty index and the phenotype. *Experimental Gerontology* 2016;79:55-60. doi: http://dx.doi.org/10.1016/j.exger.2016.03.016 - 24. Sanchez-Garcia S, Gallegos-Carrillo K, Espinel-Bermudez MC, et al. Comparison of quality of life among community-dwelling older adults with the frailty phenotype. *Quality of Life Research* 2017;30:30. - 25. Moreno-Tamayo K, Manrique-Espinoza B, Rosas-Carrasco O, et al. Sleep complaints are associated with frailty in Mexican older adults in a rural setting. *Geriatrics & gerontology international* 2017;28:28. - 26. Chen S, Hao Q, Yang M, et al. Association between angiotensin-converting enzyme insertion/deletion polymorphisms and frailty among Chinese older people. *Journal of the* - American Medical Directors Association 2015;16(5):438.e1-38.e6. doi: http://dx.doi.org/10.1016/j.jamda.2015.01.094 - 27. Wu C, Smit E, Xue QL, et al. Prevalence and Correlates of Frailty among Community-Dwelling Chinese Older Adults: The China Health and Retirement Longitudinal Study. *Journals of Gerontology Series A Biological Sciences & Medical Sciences* 2017;19:19. - 28. Dong L, Qiao X, Tian X, et al. Cross-Cultural Adaptation and Validation of the FRAIL Scale in Chinese Community-Dwelling Older Adults. *Journal of the American Medical Directors Association* 2017;27:27. - 29. Wang YJ, Wang Y, Zhan JK, et al. Sarco-osteoporosis: Prevalence and association with frailty in Chinese community-dwelling older adults. *Journal of the American Geriatrics Society* 2015;63:S352-S53. doi: http://dx.doi.org/10.1111/jgs.13704 - 30. Badrasawi M, Shahar S, Kaur Ajit Singh D. Risk Factors of Frailty Among Multi-Ethnic Malaysian Older Adults. *International Journal of Gerontology* 2017 - 31. Kashikar Y, Nagarkar A. Prevalence and Determinants of Frailty in Older Adults in India. *Indian Journal of Gerontology* 2016;30(3):364–81. - 32. Gurina NA, Frolova EV, Degryse JM. A roadmap of aging in Russia: The prevalence of frailty in community-dwelling older adults in the St. Petersburg District-The "crystal" study. *Journal of the American Geriatrics Society* 2011;59(6):980-88. doi: http://dx.doi.org/10.1111/j.1532-5415.2011.03448.x - 33. Alvarado BE, Zunzunegui MV, Beland F, et al. Life course social and health conditions linked to frailty in latin american older men and women. *Journals of Gerontology Series A Biological Sciences and Medical Sciences* 2008;63(12):1399-406. - 34. Aguilar-Navarro SG, Amieva H, Gutierrez-Robledo LM, et al. Frailty among Mexican community-dwelling elderly: a story told 11 years later. The Mexican Health and Aging Study. *Salud Publica de Mexico* 2015;57:S62-S69. - 35. Avila-Funes JA, Paniagua-Santos DL, Escobar-Rivera V, et al. Association between employee benefits and frailty in community-dwelling older adults. *Geriatrics and Gerontology International* 2016;16(5):606-11. doi: http://dx.doi.org/10.1111/ggi.12523 - 36. Sanchez-Garcia S, Sanchez-Arenas R, Garcia-Pena C, et al. Frailty among community-dwelling elderly Mexican people: Prevalence and association with sociodemographic characteristics, health state and the use of health services. *Geriatrics and Gerontology International* 2014;14(2):395-402. doi: http://dx.doi.org/10.1111/ggi.12114 - 37. Akin S, Mazicioglu MM, Mucuk S, et al. The prevalence of frailty and related factors in community-dwelling Turkish elderly according to modified Fried Frailty Index and FRAIL scales. *Aging Clinical and Experimental Research* 2015;27(5):703-09. doi: http://dx.doi.org/10.1007/s40520-015-0337-0 - 38. Zhu Y, Liu Z, Wang Y, et al. C-reactive protein, frailty and overnight hospital admission in elderly individuals: A population-based study. *Archives of Gerontology and Geriatrics* 2016;64:1-5. doi: http://dx.doi.org/10.1016/j.archger.2015.08.009 - 39. Jotheeswaran AT, Bryce R, Prina M, et al. Frailty and the prediction of dependence and mortality in low- and middle-income countries: A 10/66 population-based cohort study. *BMC Medicine* 2015;13 (1) (no pagination)(138) doi: http://dx.doi.org/10.1186/s12916-015-0378-4 - 40. Fhon JRS, Diniz MA, Leonardo KC, et al. Frailty syndrome related to disability in the elderly. *Acta Paulista de Enfermagem* 2012;25(4):589-94 6p. - 41. Agreli HLF, Gaspar JC, Yamashita CH, et al. Frailty assessment in the elderly assisted at a family health unit. *Texto & Contexto Enfermagem* 2013;22(2):423-31 9p. - 42. Duarte MCS, Fernandes MdGM, Rodrigues RAP, et al. Prevalence and sociodemographic factors associated with frailty in elderly women. *Rev Bras Enferm* 2013;66(6):901-06. - 43. Del Brutto OH, Mera RM, Cagino K, et al. Neuroimaging signatures of frailty: A population-based study in community-dwelling older adults (the Atahualpa Project). *Geriatrics and Gerontology International* 2016 doi: 10.1111/ggi.12708 [published Online First: 2016/01/23] - 44. Fabricio-Wehbe SCC, Schiaveto FV, Vendrusculo TRP, et al. Cross-cultural adaptation and validity of the "Edmonton frail scale EFS" in a Brazilian elderly sample. *Revista Latino-Americana de Enfermagem* 2009;17(6):1043-49. - 45. Carneiro JA, Ramos
GC, Barbosa AT, et al. Prevalence and factors associated with frailty in non-institutionalized older adults. *Revista Brasileira de Enfermagem* 2016;69(3):435-42. - 46. Bennett S, Song X, Mitnitski A, et al. A limit to frailty in very old, community-dwelling people: A secondary analysis of the Chinese longitudinal health and longevity study. *Age and Ageing* 2013;42(3):372-77. - 47. Woo J, Zheng Z, Leung J, et al. Prevalence of frailty and contributory factors in three Chinese populations with different socioeconomic and healthcare characteristics. *BMC geriatrics* 2015;15 doi: 10.1186/s12877-015-0160-7 - 48. Hao Q, Song X, Yang M, et al. Understanding risk in the oldest old: Frailty and the metabolic syndrome in a Chinese community sample aged 90+ years. *Journal of Nutrition, Health and Aging* 2016;20(1):82-88. doi: http://dx.doi.org/10.1007/s12603-016-0680-7 - 49. Sathasivam J, Kamaruzzaman SB, Hairi F, et al. Frail Elders in an Urban District Setting in Malaysia: Multidimensional Frailty and Its Correlates. *Asia-Pacific journal of public health / Asia-Pacific Academic Consortium for Public Health* 2015;27(8 Supplement):52S-61S. doi: http://dx.doi.org/10.1177/1010539515583332 - 50. Garcia-Gonzlez JJ, Garcia-Pea C, Franco-Marina F, et al. A frailty index to predict the mortality risk in a population of senior Mexican adults. *BMC geriatrics* 2009;9 (1) (no pagination)(47) doi: http://dx.doi.org/10.1186/1471-2318-9-47 - 51. Perez-Zepeda MU, Castrejon-Perez RC, Wynne-Bannister E, et al. Frailty and food insecurity in older adults. *Public Health Nutr* 2016:1-6. doi: http://dx.doi.org/10.1017/S1368980016000987 - 52. de Leon Gonzalez ED, Hermosillo HG, Beltran JAM, et al. Validation of the FRAIL scale in Mexican elderly: results from the Mexican Health and Aging Study. *Aging Clin Exp Res* 2015;8:8. doi: http://dx.doi.org/10.1007/s40520-015-0497-y - 53. Rosero-Bixby L, Dow WH. Surprising SES gradients in mortality, health, and biomarkers in a Latin American population of adults. *Journals of Gerontology Series B Psychological* - *Sciences and Social Sciences* 2009;64(1):105-17. doi: http://dx.doi.org/10.1093/geronb/gbn004 - 54. Galbán PA, Soberats FJS, Navarro AMDC, et al. Diagnosis of frailty in urban community-dwelling older adults. *Rev Cub Salud Publica* 2009;35(2):1-14. - 55. Boulos C, Salameh P, Barberger-Gateau P. Malnutrition and frailty in community dwelling older adults living in a rural setting. *Clinical Nutrition* 2016;35(1):138-43 doi: 10.1016/j.clnu.2015.01.008 - 56. Gray WK, Orega G, Kisoli A, et al. Identifying Frailty and Its Outcomes in Older People in Rural Tanzania. *Experimental Aging Research* 2017;43(3):257-73. doi: 10.1080/0361073X.2017.1298957 - 57. Parentoni AN, Mendonça VA, Ferreira FO, et al. Comparação da força muscular respiratória entre os subgrupos de fragilidade em idosas da comunidade. *Fisioter pesqui* 2013;20(4):361-66. - 58. Bastone AD, Ferriolli E, Teixeira CP, et al. Aerobic Fitness and Habitual Physical Activity in Frail and Nonfrail Community-Dwelling Elderly. *Journal of Physical Activity & Health* 2015;12(9):1304-11. doi: 10.1123/jpah.2014-0290 - 59. Cakmur H. Frailty among elderly adults in a rural area of Turkey. *Medical Science Monitor* 2015;21:1232-42. doi: http://dx.doi.org/10.12659/MSM.893400 - 60. Sampaio PYS, Sampaio RAC, Yamada M, et al. Comparison of frailty among Japanese, Brazilian Japanese descendants and Brazilian community-dwelling older women. *Geriatrics and Gerontology International* 2015;15(6):762-69. doi: http://dx.doi.org/10.1111/ggi.12348 - 61. Zainuddin NS, Husin MH, Ahmad NH, et al. Association between Nutritional Status, Food Insecurity and Frailty among Elderly with Low Income. *Malaysian Journal of Health Sciences* 2017;15(1):50-59.